Overview

This page provides access to open-source tools, datasets, and computational resources developed for research in computational communication science and education. These resources support transparency, reproducibility, and collaborative research.


Research Tools

The Invisible Lab

Research lab focusing on invisible information, knowledge diversity, and digital communication.

  • Website: invisible.info
  • Research on invisible information and knowledge gaps
  • Tools for measuring information diversity

PictoPercept

Capturing invisible biases through pairwise visual wikisurveys.

  • Website: pictopercept.ai
  • Visual perception research tool
  • Bias measurement through comparative judgments

Facemeasure

Democratizing facial measurements for researchers.

  • Website: facemeasure.com
  • Open-access facial measurement tool
  • Research applications in social perception

GitHub Repositories

Open-source code and replication materials available on GitHub:


Data Sources

Research projects often utilize:

  • Social media data (Twitter, Reddit, Facebook)
  • Educational assessment data
  • Digital analytics and web data
  • Survey and experimental data
  • Text corpora and linguistic datasets

Note: Specific datasets are shared alongside publications when permitted by data sharing agreements and IRB protocols.


Using Research Code

Most research code is provided in Python and R. Basic workflow:

Python Environment Setup

# Create virtual environment
python -m venv research_env
source research_env/bin/activate

# Install requirements
pip install -r requirements.txt

Running Analyses

import pandas as pd
import numpy as np
from research_tools import analysis

# Load data
data = pd.read_csv('data/research_data.csv')

# Run analysis
results = analysis.run_analysis(data)

Contact

For questions about data or tools, please contact: saurabh.khanna@uva.nl std_dev = np.std(data_array) min_value = np.min(data_array) max_value = np.max(data_array)


#### Display summary statistics:

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod
tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo
consequat `print`.

```python
print(f"Mean: {mean}")
print(f"Median: {median}")
print(f"Standard Deviation: {std_dev}")
print(f"Minimum Value: {min_value}")
print(f"Maximum Value: {max_value}")

Description of simulation parameters

ParameterValueLanguageTime periodDescription
$\alpha$$1/2$French1930–1954Tempor dolor in
$\lambda$$e/2$French1930–1954Fugiat sint occaecat
$\gamma$$\ln(3)$Spanish1833–1954Duis officia deserunt
$\omega$$10^{-4}$Italian1930–1994Excepteur et dolore magna aliqua
$\sigma$$1.5$Portuguese1990–2023Lorem culpa qui
$\chi^2$$\pi^2$Portuguese1990–2023Labore et dolore